Equivalence of Infinite Horizon Optimization Problems and Global Optimization Problems

نویسندگان

  • Seksan Kiatsupaibul
  • Robert L. Smith
چکیده

We show how to transform an infinite horizon optimization problem into a one-dimensional global optimization problem over a closed and bounded feasible region whose objective function is Hölder continuous with known parameters. The deep connection elicited between the two areas of study introduces several opportunities for cross-fertilization which we exploit within this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of trajectories in infinite horizon optimization

In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon optimization problems. The convergence is considered in the sense of ideals and their particular case called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.

متن کامل

Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem

Infinite horizon optimization (IHO) problems present a number of challenges for their solution, most notably, the inclusion of an infinite data set. This hurdle is often circumvented by approximating its solution by solving increasingly longer finite horizon truncations of the original infinite horizon problem. In this paper, we adopt a novel transformation that reduces the infinite dimensional...

متن کامل

Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Quasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems

In this paper‎, ‎we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data‎. ‎Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question‎, ‎then the essential properties of the newly introduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002