Equivalence of Infinite Horizon Optimization Problems and Global Optimization Problems
نویسندگان
چکیده
We show how to transform an infinite horizon optimization problem into a one-dimensional global optimization problem over a closed and bounded feasible region whose objective function is Hölder continuous with known parameters. The deep connection elicited between the two areas of study introduces several opportunities for cross-fertilization which we exploit within this paper.
منابع مشابه
Convergence of trajectories in infinite horizon optimization
In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon optimization problems. The convergence is considered in the sense of ideals and their particular case called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.
متن کاملSolving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem
Infinite horizon optimization (IHO) problems present a number of challenges for their solution, most notably, the inclusion of an infinite data set. This hurdle is often circumvented by approximating its solution by solving increasingly longer finite horizon truncations of the original infinite horizon problem. In this paper, we adopt a novel transformation that reduces the infinite dimensional...
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملQuasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
متن کامل